
CSS	Regions:	dancing	in	the	ruins	of	the	web
a	multi-centered	story	of	10	years	of	web-to-print	practices	based	on	a	never	fully

implemented	CSS	standard

SWITCHING	TO	"PUBLISHING
PARTYLINE	BROADCASTS:
STANDARDS	AND
WORKAROUNDS":	A	RADIO
INTERVIEW	WITH	OSP	ON	7
SEPTEMBER	2022,	WHICH
WAS	A	FIRST	MOMENT	TO
OPEN	UP	THE	CONVERSATION
AROUND	THE	CSS	REGIONS.
Simon	Browne	and	i	hosted	this	interview

together	in	preperation	of	the	Publishing	

Partyline,	a	two-day	gathering	in	Varia

around	web-to-print	practices	in	October

2022.	The	interview	was	broadcast	live

from	the	OSP	studio	on	Varia's

Narrowcast,	you	can	listen	back	to	it	here:	

https://cc.vvvvvvaria.org/wiki/Standards_a

nd_work_arounds.	Simon	and	i	were

joined	by	Amélie	Dumont,	Gijs	de	Heij,

Alex	Leray	and	Doriane	Timmermans

from	OSP.

At	the	time	of	this	conversation	i	had

heard	of	the	CSS	Regions	stories,	but	did

not	know	any	of	the	details	yet.	At	a

certain	point...

Manetta:	Can	you	maybe	explain

what	CSS	Regions	are	and	how	it

works?

Doriane:	Yeah.	[laughter]	So	CSS

Regions	is	mainly	a	set	of	CSS

properties.	And	the	way	it	works,

is	that's	it	separates	a	bit	the

content	from	the	layout,	in	the

sense	that	you	still	have	all	your

<div>'s	and	paragraphs	in	one
content	<div>,	but	then	you're
able	to	let	all	your	content	flow	in

another	set	of	<div>'s.	Which	are
basically	kind	of	empty	<div>'s,
because	when	you	inspect	them

there	is	not	the	real	content	in

them,	but	the	browser	renders	it

as	such	that	the	text	is	inside	of	it.

So	what	it	allows	you	to	do	is	that

you	have	one	big	flow	of	content,

and	todiv	ide	it	into	seperate

layout	flows,	and	to	place	each	of

these	flows	into	a	different	<div>.
So	it's	helpful	to	make	magazine

layouts	and	printed	media	in

general.

Manetta:	How	important	have	the

CSS	Regions	been	for	OSP?

Alex:	I	think	the	first	reason	to	use

CSS	Regions	was	to	do	a	multi-

paged	document.	Because	if	you

have	a	printed	booklet,	it	might	be

as	simple	as	you	want,	like	one

column	of	text.	But	you	might	have

a	footer,	or	you	might	have	an

image	on	the	right	page,	and	then

you	want	to	continue	the	text	on

the	page	after.	So	at	some	point	it

was	kind	of	the	solution	to	that,

within	this	kind	of	broken

environment	of	web-to-print	at	the

time.	So	it	was	not	so	much...

because	then	it's	funny	to	say

where	the	CSS	Regions	came	in,

but	was	not	so	much	about...	It	was

a	little	bit	like	problem	solving	for

this	multi-paged	output.	That's	the



way	that	we	found	to	do	more
fragmented	layouts,	and	also	to	go

away	a	bit	from	the	linearity	from

the	web.	But	it	also	was	at	some

costs	in	a	way.

Manetta:	Yes,	let's	jump	to	the

costs	directly.	So	in	2013	big

changes	were	made	to	the	Chrome

and	Chromium	browsers:	Google,

the	maker	of	these	browsers,

decided	to	switch	to	a	different

browser	engine.	Google	forked

Apple's	browser	engine	WebKit

and	started	Blink,	a	new	browser

engine.	And	as	part	of	this	change,

they	also	decided	to	remove	the

support	for	CSS	Regions.

Maybe	we	should	start	with

explaining	what	a	browser	engine

is,	before	we	continue?	Because

that	is	quite	important.

Gijs:	So	a	browser	engine	is	a

piece	of	software	that	translates

the	code	of	a	web	page	into	pixels,

or	the	code	into	an	image.	So	it

combines	the	content	together

with	the	rules	for	the	layout	and

the	constraints	that	are	there,	for

example	the	width	of	your

browser	window,	and	then

calculates	or	determines	what	the

layout	should	be.

Maybe	a	clear	example	is	to	think

about	an	image	with	a	width	of

50%	and	a	text	flowing	next	to	it.	If

your	screen	is	very	wide,	the

image	will	become	bigger,	but	also

more	text	fits	next	to	it.	So	that

needs	to	be	calculated.	And	if	your

screen	is	smaller,	then	the	image	is

smaller	as	well	and	the	text	has	to

flow	differently.

So	that's	what	this	engine	does.	It

takes	the	instructions	or	the

limitations	set	in	CSS	and

combines	it	with	the	content	that	it

finds	in	the	HTML,	and	it

determines	what	is	looks	like	on

your	screen.

Manetta:	And	you	could	work

with	CSS	Regions	because	they

were	implemented	in	the	WebKit

browser	engine,	right?	Can	you

say	a	bit	more	about	WebKit?

What	made	you	aware	that	you

were	reyling	on	this	particular

browser	engine?

Alex:	First	Chrome	was	running

on	Blink...

Gijs:	No	WebKit.

Alex:	On	WebKit,	sorry.	And	they

were	sharing	the	same	web

rendering...

Gijs:	Engine.

Alex:	...engine	3thank	you3	with

Safari	basically.	And	Chrome	took

some	shares	on	the	market.	At

some	point	they	decided	that	they

wanted	to	continue	the

development	of	the	browser,	they

probably	disagreed	with

something,	I	don't	know	the	story,

but	I	think	there	was	some	kind	of

disagreement.

Gijs:	I	think,	in	my	mind,	CSS

Regions	was	the	reason	for	the

split.	In	the	sense	that	there	were

blog	posts	about	the	enormity	of...

Let's	say,	there	were	a	lot	of	lines

of	code	that	were	there	specifically

to	support	CSS	Regions.	And	the

developers	wanted	to	decrease	the

size	of	Blink.

And	also,	which	is	something	else,

the	CSS	Regions	have	initially	been

proposed	as	a	standard	by	Adobe.

It	very	closely	imitates	the	idea

that	Adobe	has	about	layout,

where	you	draw	boxes	on	a	page

and	there's	content	flowing	into

the	boxes,	very	much	like	how

their	tool	InDesign	works.	And

there's	also	kind	of	a	clear

relationship	between	Adobe	and

Apple.	As	in,	I	think	at	that

moment,	the	most	important

reason	for	people	to	use	Apple

computers	was	because	Adobe

software	was	running	on	it.	So	I

also	think	that	that	heavily

influenced	Adobe's	proposal	and

their	interest	in	the	WebKit

project.

And	Google	wanted	to	remove	CSS

Regions,	or	at	least	that	is	my

understanding	of	the	story.	They

wanted	to	remove	the	CSS	Regions

functionality,	because	it	would

make	the	browser	faster.

Manetta:	Yes	that	is	what	we	also

read.	That	CSS	Regions	occupied

10.000	lines	of	code,	which	could

be	removed	from	the	browser

engine	basically,	which	was

written	in	350.0000	lines	of	C++

code	in	total.

Let's	go	back	to	OSP...	did	you

heavily	rely	on	Chrome	in	your

practice?

Alex:	I	think	when	we	discovered

CSS	Regions,	I	think	we	used

Chromium.	Which	is	an	open

source...	it	is	a	version	of	the

Chrome	browser	on	Linux.	But	we

used	it	only	for	a	very	brief	time,	if

I	remember	it	correctly,	because

right	after	Chrome	and	thus	also

Chromium	decided	to	remove	the

CSS	Regions	functionality.

Gijs:	Safari	does	not	run	on	Linux.

So	at	that	moment	Chromium	was

the	biggest	browser	on	the	Linux

platform	that	used	the	WebKit

rendering	engine.

Manetta:	Just	to	clarify,	you	all	the

using	Linux	in	your	practice?	That

is	an	important	detail.

Together:	Yes.

Manetta:	So	the	browser	you	were

using	to	produce	your	work	in,

stopped	supporting	the	CSS

Regions.

Alex:	Exactly.



Manetta:	Which	meant	that	the

way	in	which	you	were	producing

layouts	with	HTML	and	CSS	was

not	working	anymore,	thanks	to

switch	of	Chrome	from	WebKit	to

Blink	in	2013?	That	must	have

been	quite	scary.	How	did	you

respond	to	it?

Alex:	I	think	we,	we	tried...,	I

mean...	we	started	a	bit	panicking	I

think.	Not	because	we	liked	so

much	this	CSS	Regions

functionality,	because	like	I	said,	it

was	our	only	way	at	the	time,	or

the	only	way	how	you	could	think

about	multi-page	layout	in	the	web

browser.	And	we	were	not	so

much	enthusiastic	to	come	back	to

the	former	tools,	such	as	Scribus.

We	liked	working	with	the	web	so

much	that	we	wanted	to	continue

like	that,	even	though	we	had

some	reservations	about	CSS

Regions	itself.

Alex:	What	we	tried	was	to	use	a

polyfill,	that	was	developed	by	a

student	at	Adobe,	actually,	to

circumvent	or	to	re-implement	in

a	way	this	idea	of	CSS	Regions.

What	we	found	was	that	it	was

very	nice	to	have	this	code	around,

but	it	was	also	very	difficult	to

work	with	the	Javascript

implementations	of	it.	Because

first	of	all,	it	was	written	in

Javascript	which	is	not	a	low	level

programming	language	and	it

made	it	very	very	slow	when

working	on	large	documents.	And

second,	it	was	breaking	some	nice

CSS	features,	like	selectors,	which

you	use	for	instance	if	you	want	to

select	the	first	paragraph	of	your

document.	And	when	using	the

polyfill,	it	will	suddenly	select	the

first	paragraph	of	every	page,

because	the	content	is	literally

broken	into	chunks.

Manetta:	Can	you	say	maybe	more

about	this	notion	of	a	"polyfill"?

Alex:	I	think	the	name	comes	from

polyfilla.	The	thing	you	put	in	the

wall,	no?

Simon:	Oh	like	when	you	get	a

crack	in	the	wall?	Polyfill,	yes,	it's

a	brand.	Yes	it's	a	brand	for	fixing

cracks	in	the	wall.

Alex:	So	it's	exactly	that,	this	idea

to	fix	cracks	in	the	wall.

Simon:	Never	thought	about	that.

Alex:	Yes	the	idea	is	that,	correct

me	if	I'm	wrong	but,	so	like...	you

write	your	code	as	if	you	were

using	natively	the	functionality,

but	in	the	background	there	is

some	Javascript	or	a	set	of	assets,

that	kind	of	turn	it	into	a

compatible	mode	for	you.

Manetta:	And	this	brought	the	CSS

Regions	back?

Alex:	Briefly,	but	then,	like	I	said,

there	was	this	speed	issue.	It	was

really	a	mess	to	layout	the

magazine	we	were	working	on,

Médor,	with	this	polyfill.	It	was

really	really	slow.	It	was	kind	of

breaking	this	interactivity	we	had

with	the	browser.

Doriane:	And	also,	there	is	an

important	difference	with	the

polyfill.	It	tries	to	replace	the	way

how	CSS	Regions	work,	but	in

doing	so	it	totally	changes	the	way

that	CSS	Regions	are	working.

Because	CSS	Regions	is	this	kind	of

illusion,	that	is	rendering	content

like	it	was	inside	the	document.

And	the	polyfill	is	actually

breaking	up	the	content	and

actually	putting	it	into	the	<div>.

Manetta:	Did	you	work	with	the

polyfill	for	a	while,	or	what

happened?

Alex:	In	my	case	for	a	couple	of

weeks.	And	then	I	gave	up	and	we

tried	to	look	for	other	WebKit

engines,	because	actually	there

were	some.	I	remember	using

another	browser	for	a	while:

Epiphany.

Manetta:	Which	also	uses	WebKit?

Alex:	Yes	at	least	at	that	time	it

was	using	WebKit.	And	there	were

some	others.	But	the	problem	was

that	the	projects	were	not	so

active.	And	sometimes	they	lack

very	much	on	the	trunk	of	the

WebKit	engine.

Gijs:	Yes	so	there's	the	difference

between	the	browser	and	the

engine,	the	browser	being	the

interface	and	the	engine

translating	the	instructions.	Just	to

explain	what	you	said	about	the

trunk	and	lagging	behind.

So	what	it	means	to	lag	behind,	is

that	you	work	with	an	old	version

of	the	engine.	Meanwhile	time

goes	on	and	new	exciting	CSS

properties	emerge,	that	you

cannot	use,	because	the	engine	is

too	old,	in	the	sense	that	it	is	not

updated.	So	when	an	engine	is

lagging	behind	for	a	year,	you	can

bump	into	unexpected	surprises,

which	force	you	to	think	why

some	specific	CSS	properties	are

suddenly	not	working.

Manetta:	In	the	end	you	forked	a

browser	engine	yourself,	right?

Alex:	Not	a	browser	engine,	but...

So	actually	when	we	did	this

review	of	all	the	browsers	using

the	WebKit	engine,	at	some	point

we	found	one,	but	it	was	not	a

browser.	It	was	a	wrapper	around

the	WebKit	engine,	that	allowed

you	to	insert	a	kind	of	widget	into

your	program,	with	a	web	view.

The	project	we	found	is	called	Qt-

WebKit.	And	at	some	point	we	got

enthusiastic	about	it	and	started	to

make	a	"web	browser"	3	I'm	using

quotes	because	it's	a	very	very



minimal	one.	It	is	basically	a

software	that	has	a	big	web	view

and	a	small	URL	bar.	And	you	click

OK	and	then	you	can	see	the	page

inside	the	web	view.	And	that	is

what	we	called	OSPKit,	which	is

part	of	our	html2print	workflows.

Manetta:	And	because	OSPKit	is

based	on	WebKit,	it	brought	the

CSS	Regions	back?

Alex:	Yes.	And	the	developer	of	Qt-

WebKit	was	still	trying	to	keep	the

thing	updated.	And	it	also	was

someone	who	we	could	reach	on

IRC	and	discuss	with.	I	remember

once	I	asked	him	if	there	was	a

specific	property	available	in	the

browser,	and	he	said	no.	And	3

minutes	later	he	implemented	it

for	me.	So	it	was	a	very	nice

experience,	to	be	so	close	to	the

developer	and	his	project.

Manetta:	And	why	was	it

important	to	keep	working	with

CSS	Regions?

Gijs:	So	we	had	developed	more

and	more	projects	around	using

CSS	Regions,	or	that	were

depending	on	CSS	Regions.

Manetta:	One	of	the	recurrent

projects	in	which	you	worked	with

CSS	Regions	was	Médor,	right?

Amélie:	Yes	so	Médor	is	a	Belgian

magazine,	that	is	about...	I'm	not

sure	how	to	say	it	in	English.	It's

journalism	and	a	news	magazine,

doing	deep	investigation.	There	is

an	issue	every	three	months	and	it

has	been	laid	out	with	html2print

since	the	beginning.

Manetta:	So	it	was	an	important

project	for	which	you	needed

OSPKit?

Alex:	Yes.	I	think	the	first	issue

was	in	2015,	so	it	was	really	at	the

time	when	we	were	very	active

about	building	our	toolset.	The

Médor	project	both	benefited	from

our	research	and	also	was	a	drive

to	conduct	more	research.	And

because	it	was	ambitious,	not	in

the	sense	of	aesthetics	or	whatever

3it	was	that	as	well	I	hope3	but	it

was	ambitious	in	the	sense	that

the	magazine	was	broadly

distributed	and	reaching	a	lot	of

people.	So	there	was	a	lot	of

pressure	to	make	sure	that	we

have	a	correct	PDF	at	the	printer

in	time.	Because	in	journalism	the

release	is	a	very	important

milestone	that	you	cannot	really

miss.

Manetta:	Do	you	want	to	say	more

about	that	question	why	it	was

then	important	to	develop	OSPKit?

Gijs:	If	we	hadn't	done	that	it

wouldn't	have	been	possible	to

continue	working	with	our

workflow.	It	would	have	fallen

apart	and	we	would	have	had	to

rethink	completely	how	we	would

make	the	layout	for	Médor.	The

layout	of	Médor	is	very	much

based	on	a	grid,	using	all	the	boxes

and	all	the	space	that	is	available

on	the	page.	And	without	CSS

Regions	it	would	not	have	been

possible	to	produce	such	layout	at

that	moment.	We	would	have	only

been	able	to	work	with	a	single

flow.	You	can	maybe	float

elements	to	the	left	and	right,	but

that	is	it.	State	of	the	art	at	that

moment	were	multi-column

layouts,	and	this	was	often	not

supported	in	html2print.	Which

means	that	you're	left	with	a	very

impoverished	experience.

And	there's	also	something	about...

it	being	possible.	Like	you're	also

maybe	clinging	on	to	the

possibilities	of	the	moment.	In	the

sense	that...	I	think	it's	important

to	mention	that	there	is	this

promise	of	open	source,	that	you

are	able	to	influence	or	control

your	tool.	But	here	it	became	very

clear	that	a	browser	engine	is	such

a	complex	piece	of	software,	and

so	many	people	are	working	on	it,

and	if	those	people	decide	to	take	a

different	direction,	that	they	don't

care	about	the	things	that	you	care

about,	for	whatever	reason.	This

might	feel	very	foreign	or	might

also	feel	wrong.	But	it	sort	of

leaves	you	in	the	dark.	You're

there,	and	the	browser	caravan	is

carrying	on,	following	their	own

path.	And	you	try	everything	you

can	to	keep	on	working	with	it,	as

long	as	you	can.	Also	from	the

hope	that,	you	know...	that	in

WebKit,	the	CSS	Regions	remain

supported.

Manetta:	I'm	curious	to

understand	the	impact	of	such

workarounds	on	a	design	practice

like	yours.	Because	in	the	end

OSPKit	is	a	workaround,	no?	A

work	around	the	main	direction	of

the	development	of	the	web.	A

work	around	the	decisions	that	the

makers	of	browsers	make.

What	happens	when	you

introduce	such	workarounds	into

a	design	practice?	Because	it	is

quite	something.	Can	we	unpack

that?

Doriane:	Yes,	maybe.	One	of	the

things	is	that	it	creates	a	bit	of	an

alternate	reality.	Because	you're

suddenly	living	in	your	own

browser.	The	path	is	split	in	two.

And	the	current	status	of	web-to-

print	goes	further	and	new	things

are	happening	there.	But	in	the

world	of	this	OSPKit	browser,

things	are	a	bit	stuck	in	time.	And

okey	you	have	this	work	around

that	allows	you	to	use	a	magic

property	that	you	want	to	keep

close	to	yourself.	But	then	you

have	to	live	in	your	own	reality,

that	is	a	bit	outside	of	the

evolution	and	the	tendency	of	the

rest	of	the	designer	practice	in

web-to-print	specifically.

Alex:	Yes	exactly...	Because	now



Chromium

WebKit Blink

Safari Epiphany

CSS	Regions No	CSS	Regions

		OSP			

Linux

Adobe's	polyfill

operating	system

browser

browser	engine

layout	options

OSPKit	is	kind	of	fixed	in	time,	and

it's	already	static	since	2016	or

something.	It's	getting	very	old,

especially	in	this	world.

[laughter]

Alex:	It	was	a	way	to	keep	a

feature	feature	alive,	a	very	nice

feature,	or	at	least	a	work	around

that	allowed	us	to	stay	with	our

practice.	But	at	the	same	time	it's

also,	like	you	said,	it	is	cutting	us

from	new	practices	that	could

arise,	with	new	web	CSS

properties	and	developments	of

the	web.	So	yes,	it's	a	bit,	I	don't

know	how	to	say	it,	but	it's	doing

good	and	bad	at	the	same	time.

Amélie:	Just	a	few	hours	before

the	interview	we	were	chatting

and	Gijs	used	the	word

technological	archeology,	and	I

think	it	fits	to	the	way	I	feel	as	I'm

coming	back	on	Médor	and	I	didn't

especially	follow	the	development

of	html2print.	Yes	that's	it.	I'm

using	that	tool,	that's	using	old

technologies,	and	we	cannot	use

more	recent	CSS	properties.	And

so	yes,	we	have	to	work	in	other

ways	and	find	other	ways	of	doing.

Sometimes	I'm	trying	to	do

something,	and	then	I	realise,	oh	I

cannot	use	the	recent	CSS,	so	let's

try	to	find	another	way	to	do	it

otherwise.	It's	another	mindset.

Doriane:	Yeah	and	it's	a	weird

feeling.	Like	when	you're	used	to

moments	when	you	think,	oh	I

don't	know	how	to	do	this	thing,

then	you're	looking	at	the	docs

online,	and	then	you're	doing	it.

And	of	course	it's	working,

because	you	copy	paste	the

example	from	the	doc.	But	then

you	cannot	just	look	at	the	doc,

you	need	to	test	everything	and	if

something	is	not	working	you're

not	sure	what	exactly	is	working

and	what	not.

I	remember	that	especially	when

working	with	Javascript,	realising

that	yes,	we're	stuck	with	using	a

version	of	Javascript	of	2016,

which	has	evolved	a	lot	since.

And	it's	also	different	to	work

with	HTML	and	CSS	from	2016.

For	example,	when	you	want	to

make	a	border	around	a	font,	and

the	border	does	not	show,	you

know	that	this	CSS	property	was

not	supported	in	2016.	But	if

you're	writing	Javascript	it

becomes	super	hard	to	debug,

because	you	have	no	idea	which

line	is	supported	and	which	one

not.



SWITCHING	TO	THE	OSP	STUDIO	AGAIN,	ON	A

FRIDAY	MORNING	IN	JUNE	2023. 	Alex	joined	me	almost

every	Friday,	to	dive	into	OSPKit	and	CSS	Regions	together.	I	was

curious	to	talk	a	bit	more	about	the	use	of	the	CSS	Regions	in	the

making	of	all	those	issues	of	the	Médor	magazine,	since	2015,	which

is	8	years	already!

Graph	of	the	Médor

workflow,	which	can	be

summarized	as:

Nextcloud	³	cms

(Wagtail)	³	OSPKit	µ	git

µ	OSPKit	³	PDF	+	Scribus

³	PDF.

Are	there	other

tools	used	to	organise	the	collaboration	between	the

designers,	the	editors	and	the	journalists?

We	always	needed	to	make	a	flatplan	of	the	magazine,	to	see	if	there	was	no	conflict

between	let9s	say	two	articles.	Or	just	to	see	how	we	want	to	spread	the	content.	To,	for

example,	not	have	too	much	depressing	investigations	around	corruption	at	the	same	place

in	the	magazine.	The	journalists	came	up	with	a	simple	solution	that	we	still	use	actually,

which	is	a	simple	spreadsheet	with	128	cells	to	dispatch	the	pages	of	the	magazine.

The	spreadsheet	that	is	used	for	the	flatplan.

Is	such	a	flatplan	an	important	tool	for	the	overall

workflow?	Is	it	important	for	you	for	example	to

know	on	which	page	an	article	starts?

It9s	important	in	the	sense	that	we	specify	the	pagination

by	hand.	And	we	have	to	know	if	an	article	starts	on	the

left	of	right	page.

SWITCHING	TO	THE	OSP

STUDIO,	MAY	2023,

WHERE	I	AM	IN	THE

MIDDLE	OF	MY	3	MONTHS

RESIDENCY,	EXPLORING

THE	IMPACT	OF	CSS

REGIONS	ON	THE

PRACTICE	OF	OSP.

I	would	like	to	publish	a	post	on	the

OSP	blog,	to	dive	further	into	the

timelines	of	the	CSS	Regions.	But

hmm,	how	can	I	introduce	readers

to	this	story?	Where	to	start?

This	is	what	I	eventually	wrote	and

published	on	the	OSP	blog	here:	

http://blog.osp.kitchen/residency/fro

m-webkit-to-ospkit.html.

In	2013,	in	the	middle	of	W3C

discussion	threads	around



And	potentially,	to	have	an	overview	to	see	how	the	articles	are	spread,	in	terms	of	rhythm

and	stuff.

And	also,	it	can	be	nice	sometimes	to	know	where	the	center	folds	are,	for	example	when

you	have	images	across	two	pages.

How	do	you	connect	the	articles	with	OSPKit?

There	is	an	API.	In	the	former	website	it	used	to	be	a	simple	HTML	output.	We	were	just

taking	the	article	from	the	CMS	and	it	almost	had	not	structure,	just	a	few	classes.	And	now

it9s	a	json	API.

Do	you	have	an	example	in	which	we	can	see	the	CSS	Regions	at	work?

For	this	article	[on	the	screenshot	below]	there	was	a	mix	of	images	that	should	appear

inside	the	body	text,	in	the	columns,	and	others	were	placed	on	specific	positions.

This	image	for	example	is	placed	at	a	specific	position,	at	the	bottom	of	the	page.

Image	positioned	at	a

predefined	place:	at	the

bottom	of	the	page.

And	if	you	go	to

<computed=	you	have	a

very	feature	to	see	from

which	region	it	is

flowing.	So	if	I	click

there,	it	will	bring	me

to	the	div	element	that

contains	the	flow.	Not

from	where	it

originates	but	to	where

it	flows.

Paged	Media	features	of	the

web,	browsers	engine	shifts

and	partially	implemented

CSS	standards,	OSP	presented

at	the	Libre	Graphics	Meeting

in	Madrid,	to	share	insights

and	excitement	for	using

HTML	and	CSS	to	make	books

and	publications.

While	figuring	out	what

impact	it	would	have	on	their

practice	to	make	printed

matter	with	web

technologies,	OSP	listed	their

issues	to	solve.	At	the	top	of

this	list	we	find	the	issue	of

flowing	text	on	a	page.	Which

is	marked	as	resolved	with	an

"ok",	thanks	to	the	presence

of	a	specific	CSS	property:	CSS

Regions.

The	Mmmmmm	at	the	right

bottom	of	the	slide	might

already	indicate	a	gut	feeling

and	awareness	of	the	always-

changing	dynamics	of	the

web.	In	the	same	year,	in

2013,	Chromium	announced



Text	flowing	into	different

<div>	elements.

Ah	nice	you	see	the

text	flowing	from	one

page	to	the	other

here,	nice!

Maybe	in	another

article.

Screenshot	of	OSPKit,	Alex

switches	to	another	article.

Is	it	more	difficult	for

you	to	work	with

html2print	when

there	is	a	strict

seperation	between

content	and	form?	I

mean,	if	you	want	to

change	the	content,

you	need	to	make	an

edit	in	the	CMS	right?

Yes	but	since	we	have

the	CSS	Regions	we	can

still	move	things

around.

Let9s	say	we	have	a	side	note	in	an	article,	this	side	note	does	not	have	to	be	encoded	at	this

specific	place	in	the	CMS.

Do	CSS	Regions	bring	back,	in	a	way,	the	ability	to	work	with	both	content	and	form	at

the	same	time?

that	they	will	switch	browser

engine,	from	WebKit	to	Blink,

and	that	they	will	drop	the

support	of	CSS	Regions.	Since

then,	it	has	become

increasingly	hard	to	still	use

CSS	Regions	on	Linux

machines.	But	not	impossible.

The	story	around	OSP's	work

with	CSS	Regions	introduces	a

particular	example	of	a

dependency	relation	that	is

entangled	with	a	complex

configuration	of	software

timelines,	web	standards,

layout	traditions,

commissioned	work	and

excitement	to	explore	book

making	with	HTML	and	CSS.

Why	did	OSP	choose	to	stay

with	a	never	fully

implemented	CSS	standard?

In	what	degree	are	the	CSS

Regions	important	for	OSP?

Which	workarounds	are

needed	to	keep	working	with

CSS	Regions	today?



Yes	it	allows	to	move	things	around	and	change	the	structure	that	is	hardcoded	and	very

linear	in	HTML.	Sometimes	it	is	more	practical	that	a	text	flows	in	order,	but	this	order	does

not	be	the	final	order	in	the	layout.

What	is	the	difference	between	CSS	Regions	and	CSS	grid?	Both	of	them	can	be	used	to

flow	content	into	a	template,	right?

CSS	Grid	positions	already	fragmented	content.	When	something	overflows,	it9s	hidden,	it

does	not	flow	into	another	div.	It	does	not	fragment	content,	it	only	positions	it.

What	are	the	limits	of	CSS	Regions?	When	do	you	switch	to	another	tool,	like	Scribus?

Usually	when	we	switch	it	is	about	color.	What	happens	sometimes	is	that	we	have

illustrations	with	spot	colors,	or	not	even	spot	colors,	but	with	precise	CMYK	values.

It9s	interesting	that	the	workflow	enables	you	to	work	with	different	tools.	Was	it	a

conscious	choice	to	do	it	in	this	way?

At	first	there	was	this	disappointment	with&	or	let9s	turn	it	positively&	there	was	this

excitement	with	using	HTML.

But	i	think	the	mix	of	software	also	came	back	because	we	could	see	that	each	software	has

certain	weak	points	and	strengths,	or	features.	I	think	for	me	something	that	is	very

important	in	OSP	is	that	we	embrace	the	diversity	of	tools.	We	have	never	been	so	excited

about	replacing	X	with	Y.	Replacing	illustrator	with	Inkscape	for	example.	There	was	the

excitement	to	use	different	tools	for	different	kind	of	things.	Graphviz	is	for	example	a	good

example.

And	for	layout,	i	still	like	the	idea	that	you	can	use	different	tools.

SWITCHING	TO	THE

SPECULOOS	STUDIO,	WHERE

PIERRE	TAKES	TRACKS	IN

ELECTR(ON)IC	FIELDS	IN

HIS	HANDS	AND	STARTS

BROWSING...

In	the	case	of	Tracks	in

electr(on)ic	fields,	the	book	is

made	with	ConTeXt,	which

works	through	a	process	of

compilation,	so	it9s	the	same

with	html2print.	And	at	some

point	your	file	is	not

compiling,	and	all	the	stuff,

you	know&	For	me,	and	so

for	Femke,	it	was	the	first

experience	being	so

frustrated.	To	go	to	the	author

of	ConTeXt,	Hans	Hagen,	in

the	Netherlands,	to	ask	him	to

help	us&	Overall,	clearly	for

me	it	was	super	traumatic	as

an	experience.	Because	also	at

some	point,	my	own

limitiations	to	work	with

abstractions	of	the	language,

computer	language	I	mean,

was	really	blatent	and	in

many	occassions	I	have	been



obliged	to	let	Femke	alone.	It

was	also	very	painful	to	see

that.	And	you	don9t	know

what	to	do.

m:	Because	it	was	you	and

Femke	working	on	the	book?

p:	Yes	yes.	So	the	classic	but

frustrating	for	both	sides,

when	the	developer	part	is

split.	At	some	point	Femke

asked	some	help	from

Michael,	but	Michael	was	only

helping	on	the	principles	of

extreme	computing	and	like

that,	but	not	in	the	core

problems	that	we	had.	So	it

has	been	solved	mainly	by

Femke	alone.

m:	Do	you	remember	what

the	problems	were?	There

were	multiple	problems

right?

p:	That	voodoo	stuff	with	TeX.

What	is	bizarre	with	TeX	is

that	it	needs	multiple	loops	to

finalize	a	compilation.	So	it

bizarrely	processes	a	file	and

reprocesses	it	with	stuff	that

it	has	gained	in	the	first

iteration.	And	some	stuff	goes

voodoo.	Some	stuff	are

breaking	and	you	see

randomly	there	is	stuff	that

go	outside	the	boxes,	that	is

SWITCHING	TO

A	SMALL

GARDEN	OF

THE

SPECULOOS

STUDIO	IN

BRUSSELS,

WHERE	I'M

SITTING	ON	A

WOODEN	BENCH

WITH	PIERRE

HUYGENBAERT.

It's	July	2023.	A	big	table	is	standing	in	front	of	us.	Pierre	just	took	a	moment

to	search	in	the	Speculoos	book	shelves	for	some	books	made	by	OSP

throughout	the	years,	which	now	has	created	a	nice	messy	pile	of	a	lot	of

different	kinds	of	publications.

p:	It	was	after	several	attempts	by	OSP	and	Femke	seperately,	but

mainly	by	OSP,	to	use	Scribus	for	long	texts,	for	books.	And	it	was

painful.	After	the	really	beginning	of	OSP	in	2006,	2007,	2008,

many	works	were	made	in	Scribus.	We	were	always	in	and	out

with	Scribus,	but	it	was	really	painful	to	work	with	long

documents,	because	at	the	time	it	was	a	very	bizarre	behavior	of

Scribus,	that	made	files	grow	exponentialy	in	size	with	the	page

count.	I	do	not	remember	at	what	moment	precisely,	but	Andreas

Vox,	the	Scribus	dark	intelligence,	has	admitted	it	at	some	point.

m:	The	more	pages	there	are	in	your	Scribus	document,	the

bigger	the	size	of	the	file?

p:	Yes,	very	bizarrely.	Because	there	is	a	kind	of	a	loop	inside	that

process.	And	so	for	that	kind	of	stuff	you	are	really	obliged	todiv

ide	your	Scribus	document	into	multiple.	So	with	Femke	we

decided	to	go	elsewhere,	which	was	TeX.	I	don9t	remember	how

much	the	text	in	Tracks	in	electr(on)ic	fields	describes	how	much	it

has	been	super	painful.	It	was	even	more.

But	let9s	say,	with	Scribus	it	was	more	and	more	slow,	and	in	the

end	it	was	a	half	gigabyte	file	to	work	with,	but	you	are	never

stuck	to	the	point	that	it9s	not	giving	output.	You	feel	it9s	stupid

and	the	slowness	is	painful,	but	you	are	not	really	stuck.	You	are

working	with	full	breaks	on,	but	not	stuck.



not	really	a	big	problem,	but

also	all	the	indexation	system

that	has	gone	really	another

way.	In	the	end	it	was

beautiful,	but	it	was	not	the

way	we	wanted	to	do	it.

p:	[browsing	the	book]

p:	And	also	it	was	really

frustrating	to	see	how	we

hang	on	the	fact	that	it	was

not	possible	to	change	the

font.	Each	time	we	changed

the	font	it	just	exploded.

m:	It	didn9t	compile?

p:	Yes.	Or	in	a	crazy	way,	or&

So	many	dimensions	of

unpredictability.	I	think	it	has

provoked	my	reluctance	to	go

to	other	kinds	of	compilation

based	ways	of	working.

m:	But	you	came	close	to

them	when	making	the

Balsamine	programme

booklet	for	2013-2014,	right?

p:	Yes,	this	was	the	first	one

that	was	made	with	HTML

and	CSS,	but	also	many	other

things:	Scribus,	Python,

Graphviz,	Ghostscript.



SWITCHING	TO	THE	MAKING	OF,	WRITTEN	BY	OSP	AND	PUBLISHED	IN	

THE	BACK	OF	THE	BALSAMINE	PROGRAMME	BOOKLET	(2013-2014).

On	the	next	page	you	find	an	English	translation	that	i	worked	on	in	closeness	of	a

machine	translator,	as	my	French	is	not	so	advanced,	specially	not	to	catch	the	poetics	of

this	text.



Translated	in	August	2023.

Responding	to	and	infusing	the	Balsa's	speculative	programming	with	a

dislocation	slightly	perched	above	the	furrows	traced	by	Gutenberg	550

years	ago	when	it	came	to	typographically	composing	the	pages	of	a

book.	OSP	attempts	to	compose	texts	and	images	using	the	new

languages	that	are	transforming	the	web	month	after	month.	The

young	and	still	hesitant	proposals,	on	their	feet	as	the	young	foals	of

these	languages	that	are	thinking	of	the	web	to	come,	brutally	broaden

the	way	in	which	words,	sentences	and	images	live	together	like	blocks

of	ice	on	a	river	as	the	snow	melts.	The	notion	of	the	page	is	suddenly

much	more	buoyant,	and	at	the	end	of	the	process	intervenes	like	a

temporary	scansion,	like	a	mesh	in	the	rectangle	pointing	to	other

potentials.	A	document	of	the	passage	of	time.

Over	the	last	two	and	a	half	years,	a	wide	range	of	software	has	been

used	to	produce	the	graphics	for	La	Balsa's	communications	(fig.	1).

This	season,	OSP	has	decided	to	take	the	plunge	and	jump	into	the

teeming	orchard	of	recent	HTML	and	even	more	recent	CSS	(fig.	2).

Both	have	been	taken	out	of	their	natural	web	context	to	venture	into

the	production	of	the	pages	in	this	little	booklet.	The	list	of

functionalities	required	and	the	solutions	that	can	meet	them	is

growing	(even	if	it	remains	a	little	motocross	-	fig.	3).	Basically,	the	48

pages	of	this	programme	booklet	are	concentrated	in	a	long,	large	web

page	(html	+	css).	A	javascript	script	draws	the	registration	marks

needed	by	printers,	page	by	page.	This	page	is	printed	to	PDF's	and

separated	according	to	their	colours.	The	HTML	<-->	CSS	<-->
browser	<-->	file	system	<-->	command	line	ecology	reveals	the
highly	articulated	symbiosis	that	animates	these	players	bathed	in	a

common	culture	and	makes	the	flow	of	processes	required	to	produce

this	type	of	publication	relatively	fluid.	The	main	stumbling	block	that

remains,	for	the	foreseeable	future,	is	the	low	priority	currently	given

by	the	Webkit	open-source	engine	to	routines	enabling	the	stream	to	be

broken	down	into	pages.	Some	fine-tuning	at	this	stage	is	therefore	still

necessary	for	a	few	months.

The	Balsa	layout	file	can	be	visited	with	patience	and	a	browser	that

uses	the	most	recent	Webkit	possible,	such	as	Chromium,	and	by

activating	the	Webkit	Experimental	Features	at	the	chrome://flags	page.



SWITCHING	TO	THE	GARDEN

OF	SPECULOOS,	WHERE

PIERRE	MEANWHILE	BROWSES

THROUGH	THE	BALSAMINE

BOOKLET	AND	STOPS	AT	THE

MAKING	OF	TEXT...

p:	Wow,	the	Making	of	text	is

really	high	level	abstract,	even

in	French.	It	is	probably	partly	linked	to	the

Gutenberg	traces	that	we	encountered	in	the

making	of	the	Tracks	in	electr(on)ic	fields

publication.	I9m	not	sure	if	Knuth,	the	person

behind	TeX,	refers	to	Gutenberg	directly,	but

if	I	remember	it	well,	Hans	Hagen	was

referring	to	that.	And	you	feel	it	everywhere.

So	the	understanding	of	Gutenberg9s	legacy	is

probably	infused	with	that.

m:	Are	fixed	margins	on	all	the	pages	of	a	book	one

example	of	a	Gutenberg	legacy?

p:	Yes,	the	margins	were	quite	difficult	to	change	in

fact.	We	were	fighting	with	that.	Then	the	font&

Many	things	were	quite	resisting	any	change	in	fact.

Like	it	was	hard	coded.

m:	And	running	headers?

p:	This	is	not	Gutenberg	in	fact,	it9s	an	idea	of	how	a

document	should	look.

m:	In	a	way	Gutenberg	is	also	an	approach,	no?	It9s

clear	that	legibility	is	a	really	important	aspect

within	this	way	of	thinking.	Maybe	we	can	try	to

formulate	differences?	What	was	for	example

different	between	the	making	of	Tracks	in

electr(on)ic	fields	using	ConTeXt	and	the	Balsa

booklet	using	HTML	and	CSS?

p:	I	think,	for	me	when	I	have	seen	the	Balsa

booklet	taking	shape,	which	was	not	too	far

from	here	actually,	it	was	at	Ludi9s	place.

What	was	really	exciting,	was	to	really	code	it

in	HTML	and	CSS.	To	see	the	flow	and	to	say,

oke,	break	that	in	this	and	this	and	this.	That

kind	of	stuff	was	not	possible	to	do	in	other

software.	And	immediately	there	were	also

frustrations	when	it	did	not	work,	when	it



breaks	things,	but	it	still	was	like

a	[wow].	It	is	probably	the

excitement	of	making	things	in

another	way.

p:	What	was	super	exciting	in

this	stuff,	was	the	fact	that	you

feel	the	flow	even	if	that	flow	is

articulated	or	broken	in	a	very

specific	way.	And	also	to	know

that	it	was	a	flow.	Or	it9s	a	flow

that	is	guided	through	a	quite

detailed	secrecy.	At	that	moment

it	was	feeling	like,	okay,	we	are

there,	we	found	something	super

exciting,	yet	it9s	only	the

beginning.	But	now	some	of	our	problems	are

behind	us.

m:	You	mean	some	of	the	problems	with

Scribus	and	ConTeXt?

p:	Yes.	It	was	then	possible	to	have	at	the

same	time	a	flow,	with	that	practicality	of

efficiency	and	being	able	to	lay	out	it	in	a

different	way	for	the	web,	etcetera.	And	at	the	same

time	it9s	something	that	is	not	looking	like	a	flow,

with	all	the	clumsiness	we	want	or	need,	and	with

the	blocks,	without	the	painful	approach	of	working

with	a	canvas	to	pick	every	part&	Which	is	like

layouting	stuff	in	Photoshop&

p:	Working	with	HTML	for	print	for	Balsa	2013-2014

was	super	super	exciting,	I	remember.	And,	yes

after,	we	could	see	that,	for	me,	and	I	might	be

wrong&	I	never	felt	again	that	kind	of	excitement&

All	things	afterwards	were	more

disappointing,	because	the	clash	with	the	CSS

standards,	the	fact	that	the	browsers	at	that

moment	were	so	full	of	promises,	and	not	the

kind	of	dissection	we	have	seen	afterwards

with	Google	optimizing	and	stuff,	removing

possibilities	that	seem	crazy.



SWITCHING	TO	A	BLOG	POST	PUBLISHED
IN	JANUARY	2014,	WHERE	HÅKON	WIUM
LIE,	ONE	OF	THE	PEOPLE	WHO	WERE
INVOLVED	IN	THE	INITIAL	WRITING	OF
CSS,	CRITICIZES	THE	IDEA	OF	THE	CSS
REGIONS .

What	Pierre	refers	to	is	the	moment	that	Google	removed

support	for	CSS	Regions	from	their	Chrome/Chromium

browser,	and	thus	removed	the	possibility	to	work	with

multiple	flows	and	to	position	these	flows	on	a	page	manually.

It	turned	the	situation	back	to	being	restricted	to	work	with	a

single	flow.	The	single	flow	became	the	default	again,	which

means	that	your	material	can	only	be	laid	out	in	a	certain

order,	from	top	to	bottom.	You	forget	how	things	are	flowing

into	a	page.	You	forget	about	the	underlying	fragmentation,

the	blocks	and	the	flow	logics	of	HTML,	&

Håkon	Wium	Lie	is	the	father	of	CSS,	the	CTO	of	Opera,
and	a	pioneer	advocate	for	web	standards.	His	last	
article	in	this	magazine	led	directly	to	real	fonts	on	the
web.	When	Håkon	speaks,	whether	we	always	agree	or
not,	we	listen.	In	today9s	post,	Håkon	shares	his
opinion	on	CSS	Regions.

(...)

Computer	scientists	have	a	peculiar	way	of

expressing	fear	and	doubt.	They	publish	essays

with	<considered	harmful=	in	the	title.	This

particular	design	pattern	was	started	by	Edsger

Dijkstra	when	he	published	<Go	To	Statements

Considered	Harmful=	in	1968.	The	development	of

formatting	objects	led	me	to	use	the	same	device;

<Formatting	Objects	Considered	Harmful=	argued

that	formatting	objects	were	font	tags	in	disguise
and	that	their	use	on	the	web	must	be	avoided	to

preserve	web	semantics.

It	seems	that	proposals	for	presentational	elements

return	every	so	often.	The	most	recent	incarnation

is	CSS	Regions.	One	should	not	write	<considered

harmful=	articles	lightly,	but	presentational

elements	is	not	the	only	problem	with	CSS	Regions.

For	those	who	believe	in	meaningful	HTML	tags,

responsive	web	design,	and	compact	CSS	code,	the

introduction	of	CSS	Regions	is	not	good	news.

Problem	#1:	regions	use	dummy	divs

Some	articles	on	CSS	Regions	have	already	looked

at	the	source	code.	An	article	published	by	

WebPlatform.org	describes	how	to	achieve	a

commonly	used	two-column	design:

The	formatted	document	is	on	the	left,	and	the

corresponding	regions	are	shown	on	the	right.	The

HTML	code	that	generates	this	layout	must	be

studied	in	order	to	understand	CSS	Regions.	Here9s

a	snippet:

<section	class="page">
		<div	id="title"><h1>Region#1</h1></div>
		<div	id="intro"><h1>Region#2</h1></div>
		<div	id="col1"><h1>Region#3</h1></div>
		<div	id="col2a"><h1>Region#4</h1></div>
		<div	id="pull"><h1>(SeparateRegion)</h1
		<div	id="col2b"><h1>Region#5</h1></div>
</section>

The	elements	above	represent	regions,	which	are

containers	where	text	can	flow	from	one	to	the

other.	Here	is	some	of	the	corresponding	CSS

declarations	for	the	#intro	element:

#intro	{
							width:	45%;
							position:	absolute;
							top:	5em;
							height:	3em;
							-webkit-flow-from:	main;
							-ms-flow-from:	main;
							flow-from:	main;
}

The	CSS	code	above	says,	roughly:	turn	the	#intro
element	into	an	absolutely	positioned	element	with

a	given	size	and	position,	then	discard	the	content

of	the	element	and	replace	it	with	content	from	the

flow	called	<main=.	Thus,	the	h1	element	inside

#intro	isn9t	a	headline	at	all4the	div	element	is	a



presentational	container	and	the	h1	element	is

discarded.

The	proponents	of	CSS	Regions	might	argue	that,

<Yes,	the	divs	are	there	for	presentational
purposes,	but	only	elements	can	be	scripted	on	the

web	and	we	must	therefore	use	elements.=	This

underlines	an	important	point:	it9s	not	regions	per

se	that	are	harmful	to	web	semantics,	it9s	the	fact

that	they	are	encoded	as	presentational	HTML

elements.	If	we	want	regions	on	the	web,	we	should

find	a	way	to	write	them	in	CSS	and	not	in	HTML.	If

CSS	Regions	are	accepted	in	2014,	we	will	be	stuck

with	absolutely	positioned	dummy	divs	for	the
foreseeable	future.

Problem	#2:	regions	are	not	responsive

Responsive	design	is	a	hallmark	of	good	web

design.	We	want	our	sites	to	be	scalable	across	a

wide	range	of	devices;	from	small	mobile	phones,

to	smarter	phones,	to	big	screens.

(...)

Ideally,	you	want	the	number	of	columns	to	be

dynamic	so	that	a	narrow	screen	has	one	column,	a

medium	screen	has	two	columns,	and	an	ultra-wide

screen	has	three,	or	maybe	four	columns.	CSS

Regions	will	not	give	you	this.

(...)

Problem	#3:	confusing	text	flow

Specifications	often	start	out	with	a	motivational

example	to	show	how	powerful	the	proposed

functionality	is	and	how	easy	it	can	be	achieved.

The	first	example	of	the	CSS	Regions	specification	is

shown	below:

The	text	flow	moves	from	region	1,	to	2,	3,	and	4,

following	the	arrows.	Notice	how	the	eyes	of	the

reader	will	have	to	traverse	sideways,	in	the

opposite	of	the	reading	direction,	from	3	to	4.

These	kinds	of	traversals	are	not	common	in

newspaper	design,	and	I	will	argue	that	they	are

confusing	to	readers	and	should	be	avoided.	CSS

Multi-column	Layout	cannot	make	text	flow	this

way,	and	I	consider	that	to	be	a	feature.

(...)

Amongst	the	problems	discussed	in	this	article,	this

is	probably	the	one	I9m	least	worried	about;	if

enough	users	are	confused,	the	design	will	change.

But	it	seems	wasteful	to	invest	years	of	efforts	to

implement	CSS	Regions	if	most	of	the	compelling

use	cases	can	be	achieved	through	an	existing

mechanism.

Problem	#4:	verbosity

(...)

How	many	lines	would	it	take	to	encode	the	more

intuitive	design	(shown	in	the	figure	above)	using

CSS	Multi-column	Layout?	Three,	it	turns	out:

article	{	columns:	20em	}
h1	{	column-span:	2	}
img	{	column-span:	2;	float:	bottom	}

For	this	example,	using	CSS	Regions	is	a	magnitude

more	complex	than	using	CSS	Multi-column	Layout.

If	one	were	to	support	one	layout	on	small	screens,

and	more	columns	on	wider	screens,	the	code	size

for	using	CSS	Regions	would	grow	quickly.

(...)

Problem	#5:	code	reuse

(...)

Stylesheets	written	this	way	will	not	be	reusable,

each	new	document	will	have	its	own.

Harmful?

CSS	Regions	were	proposed	by	Adobe	in	2011	and

the	company	is	still	its	main	proponent.	It9s

laudable	that	Adobe	takes	the	web	seriously	and

that	it	brings	proposals	to	W3C4certainly	much



better	than	pushing	a	proprietary	technology	like

Flash.	Its	motivation	is	to	sell	authoring	tools	that

generate	CSS	code.	That9s	good,	too4the	web

needs	good	authoring	tools	and	Adobe	can	make
them.	But	CSS	Regions,	as	currently	proposed,	will

not	improve	the	web.	Rather,	it	brings

presentational	tags,	verbose	code,	and	per-

document	stylesheets.

SWITCHING	TO	A
XMPP	CHAT	WITH
MICHAEL,	WHERE	WE
STARTED	TO	TALK
ABOUT	THE
"CONSIDERED
HARMFUL"	PHRASE.
He	responded	very

enthusiastically	when	i	told

him	that	i	was	working	on

this.	I	did	not	fully

understand	what	made	him

so	enthusiastic	at	first...	So	i

curiously	took	a	dive	into

the	"considered	harmful"

timelines	a	bit.

michael@lurk.org:	
https://homepages.cwi.
nl/~storm/teaching/rea
der/Dijkstra68.pdf

michael@lurk.org:	This
is	the	infamous
Dijkstra	article

mb@vvvvvvaria.org:	Ah
yes,	Gijs	pointed	me
to	it	too,	but	thanks
for	resending	it,	i
lost	the	link

michael@lurk.org:	And
what	I	was	looking	at
is	Simon	yuills
articles	in	software
studies	a	lexicon	but
its	less	related	to
Dijkstra	than	I
thought

michael@lurk.org:	But
I	know	that	Simon

Yuill	is	really
interested	in	Dijkstra
and	once	presented
hand	written	papers
from	Dijkstra	at	a
work	session,	possibly
promiscuous	pipelines,
as	he	has	there,	but	I
don't	have	linka

michael@lurk.org:
Linka

michael@lurk.org:
Links

michael@lurk.org:	Ugh

mb@vvvvvvaria.org:	I
just	found	this
response	to	Dijkstra's
GOTO	considered
harmful	published	in
1987:	
https://web.archive.or
g/web/20090320002214/h
ttp://www.ecn.purdue.e
du/ParaMount/papers/ru
bin87goto.pdf

mb@vvvvvvaria.org:	The
"harder	to	create,
test	and	modify"	is
super	interesting!	It
makes	me	think	again
about	our	previous
conversations	around
the	pedagogical	space
of	bash	and	the
thinking	of	Papert.

SWITCHING	TO	A	

REVIEW	WRITTEN	

BY	FRANK	RUBIN	

PUBLISHED	IN	

1987,	IN	WHICH

HE	IS	CRITICAL

ABOUT	THE

"CONSIDERED

HARMFUL"	PHRASE

USED	BY	EDSGER

DIJKSTRA	IN

1968. 	Below	is	a

snippet	that	is	very	on

point:

Although	the	argument	was	academic	and

unconvincing,	its	title	seems	to	have	become

fixed	in	the	mind	of	every	programming

manager	and	methodologist.	Consequently,

the	notion	that	the	GOT0	is	harmful	is

accepted	almost	universally,	without	question

or	doubt.	To	many	people,	<structured

programming=	and	<GOTO-less	programming=

have	become	synonymous.

This	has	caused	incalculable	harm	to	the	field

of	programming,	which	has	lost	an	efficacious

tool.	It	is	like	butchers	banning	knives	because

workers	sometimes	cut	themselves.

Programmers	must	devise	ellaborate

workarounds,	use	extra	flags,	nest	statements

excessively,	or	use	gratuitous	subroutines.	The

result	is	that	GOTO-less	programs	are	harder

and	costlier	to	create,	test,	and	modify.



SWITCHING	TO	THE	OSP	STUDIO,	OCTOBER	2023,	WHERE	I	AM	MEETING	DORIANE
TO	SPEAK	A	BIT	MORE	ABOUT	MY	DEEP	DIVES	INTO	THE	CSS	REGIONS.

d:	HTML	is	text	and	text	is	linear.	If	you	look	at	one	HTML	file,	you	have	one	line	after	another.	If	you

want	to	break	the	content	into	multiple	parts,	the	break	has	to	happen	between	two	lines.	And	that	is

how	page	breaks	and	column	breaks	happen	in	a	HTML	file.

m:	But	what	kind	of	break	it	is,	is	still	up	to	the	designer	right?

d:	Yes	there	is	page	break,	column	break,	and	i	think	there	is	a	third	one.

m:	I	think	region	break	is	still	there,	but	it	is	a	legacy	property.

d:	Yes	oke.	It9s	like	we	have	a	linear	flow	and	between	two	lines	we	can	say	there	is	a	page	break,

column	break	or	region	break.	What	i	want	to	say,	to	answer	what	you	said	about	that	it9s	crazy	that

Paged.js	does	not	accept	two	flows&	How	do	you	accept	two	flows	in	the	linearity	of	a	document?	The

document	is	linear	and	the	break	has	to	be	inserted	in	this	linearity.	So,	yes,	the	way	you	will	have	to

flow	is	to	use	this	paradoxical	confusion	of	saying&

m:	So	you9re	thinking	from	the	understanding	of	a	HTML	document.	Which	are	linear,	from	top	to

bottom,	and	they	don9t	have	notions	about	placing	things	side	by	side,	if	you	think	from	the	point	of

view	of	the	semantics	of	HTML.	But	if	you	think	from	the	practice	of	book	design,	and	reading,	then	it9s

very	possible,	no?	To	have	to	things	on	one	page,	or	even	a	sort	of	horizontal	flow	that	continues.	And

these	two	practices,	the	web	practices	and	design	practices	are	coming	together	in	web-to-print,	but	it

stays	very	stuck	in	a	single	flow	way	of	thinking	about	a	page.

d:	I	agree.	This	linearity	comes	from	the	linearity	that	we	write	HTML	line	by	line.

I	can	see	why	it	causes	trouble.

m:	I	find	it	quite	a	big	statement	to	say,	that	it9s	not	possible	to	implement	something	like	that	at	all,	in

a	way	that	does	not	go	against	general	ways	of	working	with	HTML	and	CSS.	Because	in	a	way,	what

Paged.js	is	doing,	it	also	fragments	your	document	into	pages.	There	is	a	chunker	at	work	and	it9s

making	decisions	about	where	to	place	a	page	break.	I9m	just	wondering	why	a	page	break	should

stay	a	singular	one.	To	me,	as	a	designer,	it	feels	weird	to	just	accept	the	logic	of	the	flow,	where	HTML

is	based	on,	and	fully	give	up	on	layouts	based	on	multiple	flows.	Because	the	CSS	Regions	are	an

example	to	show	that	there	are	ways	to	do	this.

d:	Yes,	there	are	ways,	it	works.	But	those	ways	are	going	against	the	ideology	of	HTML	and	CSS	that

were	proposed	at	the	start.	And	this	is	something	super	conservative	to	say	also.	Like,	oh	no	we

cannot	use	it	like	that	because	it	was	not	meant	to	be&

m:	Which	would	be	sad.

d:	Yes	that	would	be	sad.	So	I9m	totally	for	the	hacks	and	to	break	the	material	and	make	something

else	out	of	it.	But,	it9s	still	important	to	see	this	kind	of	approach	for	what	it	is,	as	a	hack	craft	that	is

part	of	DIY	culture.	And	I	see	that	ideologically	it	cannot	be	part	of	standard	culture.	Because	it	breaks

the	very&	Well,	it9s	not	harmful,	it	is	wrong	to	say	that	it	is	harmful,	but	it	is	true	to	say,	to	me,	that	CSS

Regions	break	the	main	ideology	of	HTML	and	CSS.

m:	And	if	there	would	be	another	way?

d:	But	then,	what?	:)

m:	A	way	of	working	in	which	you	can	keep	your	content	and	place	them,	a	bit	like	the	CSS	grid	system

but	then	with	flows?

d:	But	to	me,	my	instinct	is	that	this	theoretical	new	way	of	doing	regions&	I	don9t	believe	a	lot	in	it.

We9re	speaking	about	something	that	does	not	exist	yet,	so	yes	there	is	the	possibility	to	invent

something	there.	But	my	instinct	is	that	because	of	the	at	one	side	the	linearity	of	a	HTML	document



and	on	the	other	side	a	multiple	flow	that	needs	to	break	on	multiple	positions,	you	will	have	to	make

a	bridge	between	those	two,	in	a	way	that	is	respectful	to	the	conservative	standard	let9s	say.	And	to

me	making	such	a	bridge	while	being	respectful	to	the	conservative	standard	is	mission	impossible.	I

can	be	surprised	of	course!

m:	I9m	nicely	surprised	by	your	counter	opinion.

d:	That	I9m	not	deeply	in	favor	of	CSS	Regions?

m:	Yes	yes.	Because	it	seems	also	related	to	your	respect	to	the	ideology.	And	your	preference	to	stay

with	it.	I9m	just	thinking	out	loud	now&	If	you	think	about	CSS	and	HTML	and	the	ideology	as

something	to	follow,	you	have	to	do	with	a	lot	of	people,	no?,	that	you	don9t	want	to	confuse.	And	if

you	take	a	hack/craft	approach,	you	are	only	confuse	yourself.	It9s	a	very	different	situation,	the	stakes

are	very	different.

On	the	ideological	side,	if	you	say:	I	wouldn9t	personally	be	in	favor	to	bend	the	ideology	that	much,

for	designers	to	get	more	space	on	the	web	to	make	more	interesting	layouts&	I9m	just	wondering,

can	you	say	a	bit	more	about	that?	There	is	something	really	interesting	going	on	here	I	think.

d:	Yes.	But	it9s	really	a	matter	of	personal	opinion!	The	first	difference	that	you9re	pointing	out	is	that

you9re	either	you	make	something	based	on	the	standard	and	your	public	is	the	large	community	that

is	using	it.	Or	you	make	a	craft	and	it9s	a	niche.	But	it9s	not	really	about	that,	it9s	really	about	taste	I

think.

To	me	it	is	not	so	interesting	to	make	editions	out	of	the	web,	if	it	is	not	to	reflect	a	bit	on	the

materiality	of	the	web.

m:	With	<edititions=	you	mean	publications	and	books?

d:	Yes.	Printed	matter.

If	web-to-print	is	becoming	this	kind	of	counter	culture	against	the	hegemony	of	Adobe9s	proprietary

software,	etc,	and	we	will	have	new	tools	to	do	design	work,	I	think	it9s	super	cool.	But	then,	it9s	also

nice	to	see	that	this	counter-culture	of	web-to-print,	comes	with	certain	aesthetics.	In	the	same	way

that	there	is	a	punk	aesthetic.	Punk	culture	has	a	certain	aesthetic	tight	to	it,	and	it9s	for	a	reason.	It9s

because	they	use	certain	material	and	come	from	a	certain	background.	And	because	of	history,	then

those	aesthetical	choices	reflect	political	or	ideological	opinion,	on	how	we	should	do	things.	And	to

me	this	link	is	interesting.

So	with	all	that	said&	To	bend	HTML	and	CSS	to	make	it	look	more	like	something	that	does	not	look

like	HTML	and	CSS,	is	not	that	important	to	me.	If	I9m	printing	something	out	of	HTML	and	CSS,	I	want

that	it9s	visible	that	it	comes	from	there,	because	then	the	aesthetic	also	speak.	Then	people	ask

questions	like,	oh	why	does	it	look	like	that	way?	Oh	it	is	designed	in	that	way,	why	is	it	designed	in

that	way?	Oh	it	is	because	you	are	against	using	that	kind	of	software,	why	are	you	against	it?	And

then	you	start	a	conversation.

But	if	the	book	looks	like	any	Gutenberg	book	design	from	the	last	100	years,	then	I	don9t	see	why

we9re	doing	that.	I	like	the	idea	that	it9s	not	only	about	the	tools	but	also	about	the	culture	that	is

created	out	of	it.	And	then	there	is	this	idea	that	doing	web-to-print	has	to	be	close	to	the	medium	of

the	web,	or	the	materiality	of	the	web,	but	this	is	not	only	about	linear	gradients	and	border	styles,	it9s

also	about	global	composition.

And	to	use	a	hacked	browser	with	something	that	goes	against	the	ideology	of	the	material&	Even	if

the	arguments	why	going	against	the	ideology	are	conservative,	and	I	don9t	want	to	agree	with	those

arguments,	because	I	would	like	to	let	people	use	the	tools	as	they	want	to,	this	is	fine.	If	I	want	to	be

close	to	the	material,	and	put	up	front	this	new	culture	of	printed	documents,	I	also	want	to	be	faithful

to	the	material.

Maybe	we	can	summarize	it	by	saying	that	the	desire	to	be	close	ideologically	to	certain	tools	or

materials,	can	have	two	sides:	the	conservative	side	and	the	punk	aesthetic	side.	I	want	to	show	the

tool,	but	also	then	I9m	also	trying	to	be	super	faithful	to	the	default	aesthetics	of	the	tools	can	also

become	quite	conservative	in	a	way.	And	those	two	sides	need	to	be	in	balance	a	bit.



So	to	me,	it9s	not	about	the	layout	tools	being	used	by	a	large	community	or	a	small	community	of

hackers,	it9s	not	really	about	that,	it9s	about	what	we	say	aesthetically	and	culturally	to	the	people	who

will	read	those	books.	At	which	point	do	we	want	to	show	them	that,	yes,	it9s	made	from	a	web

document,	and	yes,	web	documents	work	in	this	specific	way,	so	no	this	is	not	possible	to	do	and	I9m

not	going	to	bend	reality	just	to	make	it	more	academic	to	you.	I9m	accepting	how	HTML	and	CSS

works,	as	it	is,	without	being	critical	at	anything,	because	this	is	how	it	works.

m:	Last	question	then,	and	this	is	a	big	one	again,	but	how	do	you	feel	about	the	position	of	the	W3C

and	the	formulation	of	web	standards	and	the	people	who	are	in	those	work	groups,	that	represent

the	biggest	companies	that	use	the	internet	and	thus	have	the	power	to	say	what	will	be	in-	and

outside	of	the	HTML	and	CSS	standards.	This	is	a	hegemony	as	well,	that	you	have	to	deal	with	when

you	work	with	the	web.	So	I9m	curious	how	you	feel	about	working	within	that	environment?

d:	Yes&	I	have	all	those	ideas	about	web-to-print	as	an	aesthetic	and	how	it	should	be	put	forward,	in

my	opinion.	But	those	kind	of	aesthetics	are	also	context	sensitive.	What	do	you	want	to	do?	Do	you

want	to	do	a	small	punk	zine,	or	do	you	want	to	replace	a	printing	system	of	a	large	industry?	But

really,	the	printing	system	of	a	large	industry	also	has	to	be	changed	into	something	open	source	and

made	out	of	the	web,	and	not	something	punk.	But	in	my	designer	position,	I9m	more	often	in	the

position	of	weird	artistic	zines.

m:	And	you	see	space	for	those	zines	within	an	environment	of	the	web,	that	is	controlled	by	the

hegemony	of	the	web?

d:	Yes,	I	don9t	have	much	knowledge	on	this.	But	punk	and	zine	culture,	alternative	culture	of	printed

documents,	or	folklore&	have	always	found	themselves	in	the	margins	of	using	something	that	is	very

corporate	and	mainstream,	by	approprating	the	technology	for	themselves.	Zines	are	made	with

Xerox	photocopiers,	does	this	mean	that	the	punk	scene	agrees	with	the	Xerox	ideology?	No.	But	they

did	inherit	the	materiality	of	it.	In	the	way	that	those	machines	work.

In	a	way	I	could	see	the	small	web-to-print	editions	a	bit	in	the	same	way.	It9s	not	that	you9re	giving

thumbs	up	to	the	W3C,	but	that9s	what	we	have.	And	it	is	right	now	something	that	is	easily	usable	by

a	lot	of	people	that	we	can	play	with,	so	let9s	play	with	it.	And	let9s	show	its	aesthetics	in	a	raw	way.	Like

photocopies	in	old	zines	coming	out	of	a	Xerox	machine,	or	something	like	that.	Or	risograph	and	all

those	technologies.	And	it9s	something	else	to	do	the	job	of	talking	to	Xerox	or	RISO	to	say	that	they

should	change	their	machines.	No	the	punk	position	is	much	more	like	saying,	oke	we	have	a	Xerox	at

my	place	and	we	can	just	use	it	to	print	zines.	And	for	now,	my	personal	position	is	much	more	the

punk	folkloric	one.	I	can	use	this	and	show	its	aesthetics.

And	so	I	don9t	have	much	of	an	opinion	about	the	W3C&	Well	yes	I	can	have	an	opinion	about	a

specific	topic,	of	course,	but	I	don9t	have	much	to	say	about	the	working	groups	and	such,	because	I

don9t	want	to	be	part	of	that	discourse.	I	just	want	to	use	their	technology,	or	something	that	makes

sense	to	me.

Yes,	I	don9t	know.	Maybe	it	would	be	interesting	to	enter	the	discussion	with	the	working	groups&	But

really	what	interests	me	is	to	be	close	to	the	material,	the	vernacular,	folkloric	and	punk	side	of

editions&	This	is	why	web-to-print	is	exciting	to	me	right	now.	But	if	let9s	say,	we	will	have	discussions

with	those	working	groups,	and	in	5	years	you	can	easily	do	printed	matter	on	the	web,	and	big

corporations	are	starting	to	produce	print	on	the	web,	and	web-to-print	becomes	like	a	mainstream

service,	it	will	be	appropriated	by	capitalism	and	it	will	be	probably	horrible.	You	probably	will	need	to

use	a	lot	of	extensions	and	ready	made	software	to	do	it.	And	I	know	that	I	would	be	totally

desinterested	in	it.	I	would	just	switch	to	the	new	punk	way	and	alternative	way	to	do	things.	And	of

course	in	this	new	way	of	doing	things,	a	lot	of	things	will	be	fragile	and	not	work,	and	this	is	exactly

why	it9s	nice.

I	had	this	discussion	with	Gijs	about	Paged.js,	about	the	fact	that	it	is	a	polyfill	and	that	at	some	point

you	can	remove	the	polyfill	and	everything	will	just	work&	At	this	point	I	will	probably	stop	doing	web-

to-print.

m:	Ah	yes,	then	already?



d:	Already?	I	don9t	know.	It	would	mean	that	certain	actors	will	be	very	interested	in	making	printed

matter	with	the	web.	And	they	are	not	going	to	be	interested	in	making	it	work	because	some	niche

designers,	there	will	be	big	plans	behind	it.

m:	So	it9s	very	context	sensitive	for	you?

d:	Yes	it	is	very	context	sensitive.	And	at	this	point	we	will	go	back	to	make	publications	with	Python,	or

whatever.	But	to	me,	it9s	not	only	about	allowing	something	technically	or	not,	and	fighting	for

something	to	be	allowed	technically	or	not,	it9s	also	about	alternative	culture	and	folklore.	And	this	is

what	interests	me.	Small	spaces	with	oral	pedagogy,	and	learning	from	your	peers,	and	doing	things

collectively	together&	And	this	comes	with	a	whole	cultural	context.	Just	making	tools	accessible,	if	it9s

to	be	able	to	start	working	like	a	startup,	I	don9t	see	the	point.

m:	It9s	super	interesting	to	hear	your	position.	So	in	the	end	you	say	it9s	a	personal	preference	where

you	position	yourself,	in	a	way	you9re	drafting	out	a	map	and	you	say,	oke,	I9m	here	and	here.

d:	Yes	yes.

m:	You	make	a	clear	cut	for	yourself	to	say,	oke,	I	don9t	want	to	change	HTML,	I	want	to	take	it	as	it	is.

Where	I	think	for	me,	the	excitement	about	the	CSS	Regions	comes	from	the	possibility	to	not	fully

embrace	HTML	as	one	paradigm	that	just	continues	and	follows	the	logic	of	updates	all	the	time.	And

the	whole	thinking	that	you	can9t	go	back	in	time	is	weird	to	me,	because	you	actually	can	go	back	to	a

certain	browser	that	still	supports	the	CSS	Regions,	even	though	they	were	just	implemented	for	just	a

very	short	time.	I	think	it9s	super	interesting	that	you	can	move	against	the	grain	of	those

development	driven	and	future	forward	ways	of	thinking,	in	terms	of	adjusting	how	things	work.	For

that	is	super	interesting.

So	for	myself,	I	find	this	as	a	hack/craft	approach	super	interesting,	because	it	allows	me	to	think

about	why	things	change	as	they	change.	And	to	learn	about	it,	and	to	read	discussions	of	the	W3C,

and	to	see	what	kind	of	opinions	are	being	formulated	there,	and	to	learn	from	it	and	formulate	my

opinions	in	the	mean	time.

So	yes,	it9s	super	helpful	to	have	a	graph	like	this,	to	orient	yourself	within	this	world.	It	makes	it	very

exciting.	It	makes	it	exciting	to	disagree	and	to	take	different	approaches.

d:	I	don9t	even	think	it9s	a	disagreement.	I	also	agree	on	the	hack/craft	approach,	I	think	it9s	wonderful

to	bend	a	software	into	something	that	it	is	not	meant	to	do	in	the	first	place,	and	to	say	whataver,

let9s	go	against	the	ideology	of	the	standard.	I	think	it9s	also	super	cool.	It9s	just	that	I	am	not	the

person	who	is	going	to	put	all	my	energy	into	doing	that,	but	I	totally	support	that.	I	think	both	are

important.

m:	In	the	end	for	me	it9s	not	even	about	the	tool,	to	make	sure	for	example	that	OSPKit	is	available	for

another	20	years,	it9s	also	a	lot	about	the	thinking	with	it,	and	understanding,	and	learning.	This	is	for

me	the	motivation	to	do	this	work	and	to	document	it.

d:	Can	I	add	something?	Because	now	on	this	graph	we	have	on	one	side	being	faithful	to	HTML	and

CSS,	and	on	the	other	side	to	do	hack/craft	by	breaking	it.

m:	Or	to	not	follow	the	modern	up-to-date	regimes..

d:	Yes.	Allright,	but	there	is	something	that	is	not	there	on	the	graph	right	now.	Because	there	are	two

different	things:	it9s	about	doing	hack	and	craft	for	yourself	or	your	small	community,	by	bending	the

software	and	go	beyond,	but	you	also	have	those	forces	who	are	trying	to	turn	the	hack	and	craft

approach	back	into	the	new	ideology	of	the	standard	again.	I	can	support	the	hack	and	craft	and	all	of

that,	but	this	arrow	is	another	question.

I	can	situate	practices	that	just	work	with	HTML	and	CSS,	that	work	without	regions	breaks,	there	is	no

polyfill,	etc.	Or	I	can	do	something	with	the	Paged.js	polyfill,	or	OSPKit	and	CSS	Regions,	and	have	a	lot

of	fun.	But	then	to	say,	we	should	put	back	CSS	Regions	in	the	standards,	or	we	should	put	the

Paged.js	polyfill	back	into	the	standard,	it	will	remove	these	practices	from	their	hack	and	craft	cultural

context.



The	thing	with	Paged.js	is	that	it	is	faithful	to	HTML	and	CSS	ideology,	but	also	faithful	to	a	hegemonic

cultural	context.

m:	Yes	it	fits	the	needs	of	the	large	print	industry.

d:	Yes	which	is	something	different	then	making	a	punk	scene	out	of	HTML	and	CSS,	without	any

hacking	or	crafting,	just	accepting	anything	that	comes	from	the	browser.	Without	trying	to	bend	the

tools.

m:	Yes.	There	is	something	interesting	that	here,	with	the	punk	side,	there	is	a	desire	to	stay	close	to

form	and	aesthetics,	and	intention,	and	the	question	for	who	the	publication	is	is	an	important	aspect

for	making	it	in	a	punk	way.	Where	here,	in	the	large	print	industry,	there	is	a	disconnect	between	tool

and	aesthetics,	as	it	does	not	really	matter	if	a	book	is	made	in	HTML.	Where	here,	in	the	hack/craft

approach,	form	and	content	and	tool	and	aesthetics	come	very	close	to	each	other,	as	it	is	all	about

zooming	in	and	staying	very	close	to	the	materiality	of	both	tools,	content	and	context.

d:	Maybe	to	situate	a	bit	more	my	opinion,	and	I9m	a	bit	thinking	out	loud,	my	personal	opinion	about

that	comes	from	a	personal	experience,	as	I	did	not	have	studied	as	a	designer,	but	as	an	artist.	And

this	is	an	idea	that	is	really	rooted	in	artistic	practice,	the	idea	that	you	should	embrace	the	medium.	If

you	are	working	with	ceramics	or	food	or	with	whatever,	you	should	take	advantage	of	this	medium,

you	should	show	the	grain	and	not	try	to	disguise	it.	Art	can	still	disguise	it	of	course,	but	this	is	an	art

school	philosophy.	When	doing	net	art	for	example,	you	should	be	concious	of	the	environment.	Or

when	making	work	for	a	white	room,	you	will	have	to	be	concious	of	that	context.

This	very	much	comes	from	an	art	perspective	on	it.	I	can	imagine	that	a	designer	would	not	think	as

much	from	the	origins	of	the	material	but	would	think	a	lot	about	usage,	and	how	people	receive	it,

and	what	impact	it	creates	to	have	the	text	shaped	in	a	certain	way.	Where	I	think	a	lot	about	the

materiality	of	it.

m:	I	understand,	but	in	the	example	of	net	art,	I	find	it	a	pity	that	sometimes	the	whole	organisational

procedures	and	the	politics	behind	an	environment	are	not	seen	as	the	material,	that	also	shape	the

environment	in	the	end.	There	is	a	focus	on	the	aesthetics	and	materiality,	but	I	just	find	it	so

interesting	to	also	look	further	then	that,	and	to	understand	who	is	deciding,	who	says	that	it	should

be	like	that,	and	what	is	happening	in	the	mean	time.	I	think	this	is	an	interesting	layer	to	include

when	thinking	about	web-to-print,	because	this	makes	it	more	than	an	aesthetic	or	material.	I9m	not

saying	that	I	don9t	find	aesthetics	and	materiality	important,	on	the	contrary.	Aesthetics	can	speak	to	a

big	crowd,	it9s	a	super	powerful	part	of	it.	But	I9m	also	interested	in	looking	further,	and	then	I	bump

into	the	CSS	Regions	story	and	everything	that	happens	behind	it.	And	it	makes	me	interested	in

understanding	these	procedures	of	how	growth	is	defined	within	the	context	of	the	web,	and	how	you

can	go	against	that,	you	don9t	have	to	follow	it.	It	is	another	way	to	work	with	what	the	web	is	for	me,

that	is	maybe	not	depending	on	the	aesthetic	side	of	it.

d:	But	if	you	don9t	communicate	the	process	of	your	craft	through	the	aesthetics	of	it,	then	you	will

have	to	communicate	it	in	another	way.

m:	That	is	a	good	point,	yes.

d:	To	me	this	is	a	bit	the	problem	with	Médor,	there	are	no	traces	of	HTML	and	CSS	in	it.	To	me	it9s	sad,

it9s	really	sad.	I	would	like	that	people	open	Médor	and	that	people	feel	that	it	is	a	bit	like	a	website.

Even	if	we	use	the	CSS	Regions,	you	can	be	crafty	and	go	against	the	ideology	of	the	standard,	but	still

it9s	important	to	show	this	craft	in	a	certain	way.	Should	we	just	draw	an	arrow	between	the	boxes?	Or

should	we	have	an	external	flow	again	somewhere	else	that	is	linear?	There	is	a	lot	of	play	that	can	in

some	way	reveal	this	craft,	that	I	would	find	interesting.

m:	Yes	it	is	a	super	good	point,	how	do	you	reveal	all	the	interest	in	the	background	processes.	It9s	so

hard	to	make	them	visible	and	let	them	speak	in	layout.	There	must	be	other	ways	next	to	aesthetics.

d:	Yes	there	are	other	ways.	But	still	I	have	something	super	I	would	say	child	like.	When	I	see

something	is	printed	with	a	border-radius	50%,	you	can	directly	see	that	it	is	that,	because	you	have	a

lot	of	element	of	different	sizes	and	the	ellipses	are	spaces	differently	in	each	object.	And	this	is	super

nice	to	see,	because	it	comes	from	certain	material,	and	you	see	that	without	any	kind	of	word	of



aesthetics

a
p
p
r
o
a
c
h

W3C

custom
hacks

punk industry

web-to-print	political	compass

conversation.	I9m	not	understanding	aesthetic	as	something	elegant	or	whatever,	but	as	something

that	speaks.	Sometimes	just	recognizing	one	CSS	property	is	just	wow.

So	in	a	way	my	question	is,	oke,	nice	to	do	hacky	CSS	Regions	craft,	but	how	can	you	express	this

process	in	a	similar	way?	If	you	don9t	go	into	the	direction	of	following	the	standard	and	you	go	into

the	direction	of	bending	the	standard,	then	how	can	you	show	those	cultural	elements	that	are	linked

to	this	craft	within	the	final	object?	How	can	you	express	it	in	the	object	that	you9re	printing?

This	zine	is	made	with	HTML	and	CSS,	using	OSPKit	and	/	CSS	Regions	/.	
pdfbook2	is	used	to	turn	the	PDF	into	a	booklet	PDF.

The	title	is	a	version	of	"Dancing	in	the	ruins	of	big	tech",	one	of	the	slogans	of	the	digital
depletion	strike.	https://titipi.org/wiki/index.php/Slogans

Pre-publishing	moment	on	the	occassion	of	zine	camp	2023,	Rotterdam.

With	many	thanks	to	OSP	for	my	residency	period.

©	Manetta	Berends,	November	2023.	 	Published	under	Copyleft	Attitude	with	a	difference	license:
Collective	Conditions	for	Re-Use	(CC4r)	(version	1)	https://constantvzw.org/wefts/cc4r.en.html


